A Sparse Discretization for Integral Equation Formulations of High Frequency Scattering Problems

نویسندگان

  • Daan Huybrechs
  • Stefan Vandewalle
چکیده

We consider two-dimensional scattering problems, formulated as an integral equation defined on the boundary of the scattering obstacle. The oscillatory nature of high-frequency scattering problems necessitates a large number of unknowns in classical boundary element methods. In addition, the corresponding discretization matrix of the integral equation is dense. We formulate a boundary element method with basis functions that incorporate the asymptotic behavior of the solution at high frequencies. The method exhibits the effectiveness of asymptotic methods at high frequencies with only few unknowns, but retains accuracy for lower frequencies. New in our approach is that we combine this hybrid method with very effective quadrature rules for oscillatory integrals. As a result, we obtain a sparse discretization matrix for the oscillatory problem. Moreover, numerical experiments indicate that the accuracy of the solution actually increases with increasing frequency. The sparse discretization applies to problems where the phase of the solution can be predicted a priori, for example in the case of smooth and convex scatterers.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A sparse discretisation for integral equation formulations of high frequency scattering problems

We consider two-dimensional scattering problems, formulated as an integral equation defined on the boundary of the scattering obstacle. The oscillatory nature of high-frequency scattering problems necessitates a large number of unknowns inclassical boundary element methods. In addition, the corresponding discretisation matrix of the integral equation is dense. We formulate a boundary element me...

متن کامل

Well-conditioned boundary integral equation formulations for the solution of high-frequency electromagnetic scattering problems

We present several versions of Regularized Combined Field Integral Equation (CFIER) formulations for the solution of three dimensional frequency domain electromagnetic scattering problems with Perfectly Electric Conducting (PEC) boundary conditions. Just as in the Combined Field Integral Equations (CFIE), we seek the scattered fields in the form of a combined magnetic and electric dipole layer ...

متن کامل

On the numerical evaluation of the singular integrals of scattering theory

In a previous work, the authors introduced a scheme for the numerical evaluation of the singular integrals which arise in the discretization of certain weakly singular integral operators of acoustic and electromagnetic scattering. That scheme is designed to achieve high-order algebraic convergence and high-accuracy when applied to operators given on smoothly parameterized surfaces. This paper g...

متن کامل

Volume Integral Equation Method in Problems of

Preface In our course we will consider the volume integral equations in the following form) () () () () () (x f dy y u y b y x y x K x u x a Q m = − − + ∫ , 3 ≤ m. Many important classes of the wave scattering problems can be described by equations of this form; for example, this is the case for problems of electromagnetic and acoustic scattering on 3D transparent bodies. The corresponding inte...

متن کامل

Fast, High-Order, Well-Conditioned Algorithms for the Solution of Three-Dimensional Acoustic and Electromagnetic Scattering Problems

We present a novel computational methodology based on Nyström discretizations to produce fast and very accurate solutions of acoustic and electromagnetic problems in small numbers of Krylov-subspace iterative solvers. At the heart of our approach are integral equation formulations that exhibit excellent spectral properties. In the case of scattering from perfectly conducting structures, and jus...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • SIAM J. Scientific Computing

دوره 29  شماره 

صفحات  -

تاریخ انتشار 2007